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It will be shown that the extrapolation of empirical logarithmic expressions of a group of thermal prop
erties of liquid He4 at the approaches of the lambda transformation, implying their singular behavior, is 
without physical justification. These properties do not even start to become large until one invokes tempera
ture separations from the lambda temperatures, the argument of the logarithmic expressions, which are very 
many orders of magnitude smaller than the root-mean-square temperature fluctuations of the liquid-He4 

samples investigated. Consideration of temperature intervals smaller than the root-mean-square temperature 
fluctuations is excluded by statistical thermodynamics. On analyzing the lambda transformation at melting, 
first an exact thermodynamic relation will be proved through the geometrical properties of a class of isochores 
in the pressure-temperature diagram. Provided that the thermodynamic characteristics of the lambda trans
formation remain invariant all along the transformation locus, the thermodynamic relation proved at melting 
has the following corollaries: If the transformation volume line is not parabolic in temperature at the ap
proaches of its end point at melting, singularities of a group of interrelated thermal properties must exist at 
the lambda transition. If this approach is parabolic, the existence of singularities neither is necessary nor can 
it be ruled out. In the latter case, new physical approaches would be needed for an unambiguous determina
tion of the existence or absence of singularities of thermal properties at the lambda transformation. 

1. INTRODUCTION 

IN the course of recent work1,2 on solid He4 in equi
librium with the liquid phase, the anomalous lambda 

transformation of the latter was also discussed by us. 
The attempts at further clarifying the thermodynamic 
aspects of the liquid He4 n-He41 transition were 
motivated, in connection with the problem of the 
liquid-solid equilibrium, by the fact that the trans
formation extends up to, and including, melting con
ditions. The solidification or melting process thus raises 
problems which refer to the equilibrium of both the 
normal and the anomalous liquid with the solid along 
the melting line. Similar problems of the dense phases 
in equilibrium with each other have been studied3,4 in 
connection with the solidification process of liquid He3, 
since the latter is thermally anomalous also over a 
wide temperature interval along the melting line. Prior 
to our work on the liquid-solid equilibrium of the two 
He isotopes, we had the opportunity5 of discussing the 

1 L . Goldstein, Phys. Rev. Letters 5, 104 (1960); Phys. Rev. 
122, 726 (1961). 

2 L. Goldstein, Phys. Rev. 128, 1520 (1962). 
3 L. Goldstein, Ann. Phys. (N. Y.) 16, 205 (1961). 
4 L. Goldstein and R. L. Mills, Phys. Rev. 128, 2479 (1962). 
5 L. Goldstein, Ann. Phys. (N. Y.) 2, 177 (1957). 

A 

unsatisfactory features of the variation of the liquid-
He4 volume or density at saturation, around the 
He4 n-He41 transformation temperature TVsat. It was 
thus realized that some type of volume anomaly is 
likely to occur somewhat beyond, if close to, the trans
formation temperature. The study of the temperature 
variation of the latent heat of vaporization5 similarly 
led to predict the occurrence of a sharp minimum of 
this property beyond To.sat, though close to it. This 
result was of strictly thermodynamic character and 
was derived from the temperature variation of the 
saturated liquid heat capacity. The anomaly of the 
latter was demonstrated with the highest temper
ature resolution so far, by Fairbank et a/.,6,7 whereby it 
was implied that this property may be singular at 7Vsat, 
there being possibly an infinitely large heat capaciy Csat 
on extrapolation of a logarithmic fit to the heat ca
pacity data over the range 10_2> | T— To,sat| >2.10~6 

°K. Prior to the saturated liquid heat capacity work, 
6 W. M. Fairbank, M. J. Buckingham, and C. F. Kellers, in 

Proceedings of the International Conference on Low-Temperature 
Physical Chemistry, edited by J. E. Dillinger (University of 
Wisconsin Press, Madison, Wisconsin, 1958), p. 50. 

7 C . F. Kellers, Ph.D. dissertation, Duke University, 1960 
(University Microfilms, Inc., Ann Arbor, Michigan, 1962) 
(unpublished). 
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the saturated liquid expansion coefficients asat(T) or 
[V 6Qlt~

l (dV ^t/dT)~] were fitted8 with a function linear 
in l n ( r 0 . s a t - r ) , at 10"3< ( r 0 , S a t - r ) < 0 . 1 ° K . Ad
ditional work on the saturated liquid volumes, either 
indirect, as through refractive index9 and dielectric con
stant measurements,10 or direct volume measurements11 

on both sides of the transformation point, have 
confirmed the possibility of a logarithmic variation of 
the saturated liquid expansion coefficients, asat, over the 
range of 10~4< | T- To.sat | < (5-6) X 10~2 °K. 

The nature of the conjectured volume anomaly5 on 
the saturated and compressed liquid was established 
experimentally as a minimum of the saturated liquid 
volume11 or a minimum of the isochores12 or of the 
isobars13 of the compressed liquid. The predicted shape5 

of the latent heat of vaporization seems to be fully 
compatible with the behavior of the saturated liquid 
near the transformation temperature. 

The object of the present work, within the formalism 
of thermodynamics, is an attempt at a qualitative 
approach to the problem of the existence or non
existence of the singularities implied by the data. I t 
will thus be shown that the implication of the existence 
of a singularity of some property through the loga
rithmic term of an expression which describes the data, 
to some limited approximation, loses its physical basis 
as soon as the temperature fluctuations of the system 
imposed by statistical thermodynamics are taken into 
account. The extrapolation of the approximate loga
rithmic representation of the data beyond the experi
mental range thus appears physically unjustified, on 
the acceptance of the assumption of the validity of the 
analytical representation beyond its established range 
notwithstanding. The attempt at ascribing infinitely 
large values to some thermal properties at the 
He4 n-He41 transition line, even though their ap
parent approach toward such values is extremely slow, 
and which also conflicts with statistical thermody
namics, meets with additional complications. Namely, 
the acceptance of the extrapolated singularities of 
certain thermal properties along the transformation 
line imposes very large values to other properties. 
These also seem to tend, apparently only very slowly, 
even logarithmically over finite ranges of the argument 
of the latter function, toward their finite, if very large, 
limits at the transition line.12 Again, temperature fluc
tuations render physically meaningless the very extrap
olation of the empirical fits so as to reach even a 
fraction of the implied finite but very large limits of 

8 K. R. Atkins and M. H. Edwards, Phys. Rev. 97, 1429 
(1955). 

9 M . H. Edwards, Can. J. Phys. 36, 884 (1958). 
10 C. E. Chase, E. Maxwell, and E. Millett, Physica 27, 1129 

(1961). 
11 E. C. Kerr and R. D. Taylor, Ann. Phys. (N. Y.) 26, 292 

(1964). 
12 O. V. Lounasmaa and L. Kaunisto, Ann. Acad. Sci. Fennicae 

AVI, No. 59 (1960). 
13 E. R. Grilly and R. L. Mills, Ann. Phys. (N. Y.) 18, 250 

(1962). 

these nonsingular properties. Inasmuch as these regular 
properties escape observation of even fractional values 
of their limits at the transition line, the problem arises 
if the indicated extrapolations applied to the fits of the 
"singular7' properties overshoots the correct, possibly 
very large, limits of these properties, as they would do 
it with the regular properties which are effectively 
finite at the transition. These extrapolations are ex
tended into the range of the variables (TQ—T) or 
(T—To), which range falls entirely within the range 
of the temperature fluctuations. 

A possible experimental approach which may shed 
additional light on these problems will be seen to 
emerge from the present work. Provided that the 
thermodynamic characteristics of the liquid He4 n-He41 
transformation remain invariant along the transforma
tion line, the melting condition included, a limiting 
property of this line derived geometrically, at melting, 
when combined with the experimental approach to be 
described, may yield qualitative justification for the 
existence or nonexistence of singular properties at the 
transformation line. 

2. ISOBARS AND ISOCHORES OF LIQUID He4 

IN ITS TRANSFORMATION REGION 

The transformation line in the pressure-temperature, 
(p,T), volume- temperature, (V,T), and pressure-volume, 
(p,V), thermodynamic diagrams are characterized by 
the following empirical inequalities: 

- co<(tp0(T)/dT)<0; ™>(dV,(T)/dT)>0-

-oo<dp0(V)/dV<0, 

where the subscript " 0 " refers to the state variable at 
the transformation line, and the derivatives are total 
derivatives along this line. At the present time, there 
does not seem to be any experimental evidence for the 
occurrence of singular values of the above derivatives 
at any point of the transformation arcs, limited by the 
states (/>o,sat, Fo.sat, To,a&t) and (po,M9 VO,M, TQ,M) at the 
saturation (subscript sat), and melting lines (sub
script M). I t must be noted here, however, that with 

(d2pQ/dT*)<0, (dWo/dr)>0, (2) 

the decreasing negative derivatives (dpo/dT), with in
creasing temperatures, the largest negative value of 
this quantity at po,aa,t, or at low pressures near ^o.sat, 
has reached values obtained through the observation 
of flow processes14 which are numerically larger than 
those obtained through static equilibrium thermo
dynamic measurements.15 Inasmuch as it is unlikely 
that the single-valued thermodynamic functions rela
tive to the transformation arcs, po(T), VQ(T), Vo(p), 
have multivalued derivatives at any one of their points, 

14 W. E. Keller and E. F. Hammel, Jr., Ann. Phys. (N. Y.) 
10, 202 (1960). 

16 W. H. Keesom, Helium (North-Holland Publishing Com
pany, Amsterdam, 1942), pp. 186-254. 
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measurements yielding data converging toward a unique 
limit appear here to be highly desirable. Empirica'ly,15 

the transformation arcs po(T), VQ(T), and po(V) appear 
to be of monotonic variation.16 

We have to compare now the temperature variations 
of isochores p(T,V) at the transition line po(T) with 
that of the latter at their points of intersection, or in 
their neighborhood. According to thermodynamics, 

(dp(T,V)/dT)v„v9= Ldpo(T)/dTl 
+Ll/Vo(T)XT(T0)PomdV0/dT), (3) 

where XT(To,po), the isothermal compressibility at 
(po,Vo,To), the state under consideration on the transi
tion line, is positive as is the second term on the right-
hand side, by the inequalities (1). Hence, 

Ldp(T,V)/dr\v-rt>(dprfdT), (4) 

or, in order for the anomalous isochore p(T,V) of 
liquid He4 n, of negative temperature derivative, to 
cross the transition line, the inequality sign must 
prevail in (4), as shown previously.1 If the temperature 
derivatives of the isochores are discontinuous at the 
transition line, then, necessarily, XT is also discontinu
ous, and (3) yields, at once, this discontinuity as 

A(dp/dT)V-vQ= (dp+/dT)Vo- (dP-/dT)Vo 

= LVf>(T)^(dVo/dT)A(l/XT), (5) 

one of the Ehrenfest-type relations. 
If (dp/dT)v is continuous across the transition line, 

the existence of the locus Ta,i of the minimas of the 
isochores and isobars in the He41 region imposes a 
change in the curvature of these characteristic lines of 
the state diagrams at T<Ta,i. The isochores p-(T,V) 
being concave downward in the (p,T) plane, in the 
He4 II region, have to become concave upward in the 
He41 region and the inflection points, if existed, are 
expected to form the locus of the transition points 
po(T) or V0(T) for the isobars V(T,p) in the (V,T) 
diagram. The isochores may, however, reach the transi
tion line with finite second temperature derivatives, 
negative and positive, respectively, on the low- and 
high-temperature sides of the transition line. The func
tions Ldp(TyV)/dT2v, (dV/dT)p, (dp/dV)T, have then 
angular points on the transition lines, po(T), Vo(T)9 

po(V). This results infinite discontinuities of (d2p/dT2)v 
at po(T). Or, rewriting (3) as 

dp0/dT= (dp/dT)v=v0+ (dp/dV)T=T0(dVo/dT), (6) 

one obtains on the two sides of po(T), 

d2p0/dT2 

^(d*p±/dr)v-v0+2(d*p±/dVdT)Vo,T0(dVo/dT) 
+ (dp±/dV)T~T0(dW0/dT*) 

+(d*p±/dV*)(dVQ/dT¥, (7) 

16 In Ref. 12, an approximate cubic expression in (r0)Sat— T) is 
given for the transition arc po(T) of the liquid density. This 
cubic has, however, an inflection point at about 1.87°K. Presum-

since a term containing (8/dV)T(dVo/dT) vanishes 
identically. With the first partial derivatives (dp/dV)r 
being continuous at the transition, one obtains 

A(d*p/dDv=v0 

= - (dVo/dT)t(dVo/dT)A(d>p/dV2)T=T0 

+2A(d2p/dVdT)Vo,To]. (8) 

According to the remarks made above, if it existed, 
the preceding discontinuity should be positive. The 
discontinuities of the other second partial derivatives 
are seen easily to be given by 

A(da7/dr8)p-P0= - (dpo/dT)l(dpo/dT)A(dW/dp2)T~To 
+2A(dW/dpdT)PQ,To], (9) 

and 

A(dW/dp2)T=TQ- - (dTo/dp)tA(dW/dT*)p=PQ(dTo/dp) 
+2A(dW/dTdp)TQ)PQ-], (10) 

where T0(p) is the inverse function of po(T). 
The situation may also arise with the equality sign 

in (4), or 

dp0/dT= (dp_/dT)v0= (dp+/dT)yQ. (11) 

The second derivatives of the isochores are thus con
tinuous at the transition point, the second derivatives 
vanishing at the transition line, and po(T) would be 
the locus of inflection points of the isochores. Inasmuch 
as dVo/dT is finite at all points oiVo(T)} relations (1), 
the situation described by (11) requires by (3) that 

limT->TQ,p->p0XT(T,p) - > oo, (12) 

or the isothermal compressibility must become singular 
at the transition line. Since, (dp/dT)v is finite by (1) 
or (11), the singularity of the isothermal compressi
bility is equivalent to that of the isobaric volume 
expansion coefficient ap(T,p), or to that of the constant 
pressure-heat capacity as discussed further below. The 
condition (11) imposes a sharp minimum on the deriva
tive (dp/ST)v at the transition line. 

We turn now to the analysis of the experimental 
evidence on the temperature derivatives of the iso
chores and isobars in the transformation region. 

Direct measurements of (dp/dT)v have been per
formed by Lounasmaa on both sides of the transition 
line, down to | T-T0(p)\ -10~3 °K in one set of ex
periments,12 and to within 2X10"5 °K to TQ(p) in a 
second independent experiment17 where only one single 
isochore was explored. Even though (dp(T,V)/dT)v is 
regular everywhere, it appeared that these partial 
derivatives could be approximately represented at the 
smallest values of \T—To(p)\, or between 10-1 and 
2X 10~3 (°K), and between about 10~2 and 2X 10~5 (°K), 
in the second experiment,17 by an expression of the 

ably, the authors would not have considered this cubic satis
factory had they noticed its contortion. 

17 O. V. Lounasmaa, Phys. Rev. 130, 847 (1963). 
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type 
(dp±/dT)v=A±+B±ln\T-To(p)\ , (P) 

where A± and B± are constants, A- being negative, 
whose numerical values are between 2 and 8, the 
pressure being expressed in units of atmospheres. 
Clearly, these approximate expressions must break 
down at values of \T—To(p)\ below those explored 
experimentally, since (dp±/dT)v is finite at To(p). 

An interesting feature of the (dp/dT)v measure
ments12 at various volumes and down to \T—To(p)\ 
>10~3 (°K) consists in that these derivatives, at the 
smallest values of \T—To(p)\ increased regularly as 
the volume of the explored isochore increased toward 
saturation volume. This variaton of (dp/dT)v, at 
| T— To(p)\ >2X10~ 3 °K, is opposite to the variation 
of the derivative (dpo/dT) of the transition line itself. 
The latter is the smallest at saturation and increases 
with increasing pressure or decreasing volume along 
the transition. The recently observed trend of varia
tion of (dp/dT)v in the neighborhood of the transition 
line12 is fully in line with the original equation of state 
studies of Keesom15 on isochores. The more recent 
work of Lounasmaa,17 of increased accuracy at a molar 
volume close to that of one of the isochores in the 
earlier work,12 and extending down to 2X10~5 °K in 
\T—To(p)\, appears to be in good agreement with 
the earlier work extending to To(p)-T~2XiO~z °K. 
The largest numerical values of (dp/dT)v at the 
smallest values of | T—To(p)\ are always three to ten 
times smaller than the values of dpo/dT at V= VQ. In 
terms of the approximate logarithmic fits, like (P) 
above, the (dp/dT)v values reach those of (dpo/dT) 
at values of \T—T0(p)\, which are well below those 
used in macroscopic thermodynamics. For instance, if 
one assumes that the logarithmic representation of 
derivatives (dp/dT)v of the recently studied isochore 
by Lounasmaa17 may be extrapolated to \T—To(p)\ 
<2X10~ 5 °K, the latter difference being the limit of 
the experimental range, then the above representation 
yields a (dp/dT)v equal to (dpo/dT) at V= Vo, at 
T o - r - 1 0 - 2 3 °K. The value of (dp^/dT)v at (T0-T) 
~ 2 X 1 0 ~ 5 °K being only — 17 atm/°K, more than four 
times less than (dpo/dT) which, at the volume of this 
isochore, is —76 atm/°K. As will be seen below, such 
small values of (TQ—T) are enormously smaller than 
the lower limits of the physically admissible values of 
this parameter allowed by the temperature fluctuations. 

At the present time, the main result of (dp/dT)v 
measurements consists in that these derivatives are 
considerably smaller even at | r — r 0 [ ^ 1 0 ~ 5 °K than 
their finite limits they ought to reach at T0 if the 
implications of the tentative interpretation of heat 
capacity6,7 and expansion coefficient measurements8-11 

were acceptable without qualification. The implied 
finite limits (dpo/dT) of the derivatives (dp/dT)v^v0 

of isochores at the transformation line appear to be 
inaccessible experimentally in terms of the available 

data on the latter.12'17 Within the explored range of 
\To~T\, the (dp/dT)v values appear to be discon
tinuous in the sense that 

tdp+(TQ+AT, V)/dT-]v 

>tdp-(TQ-AT, V)/dT}v (13) 

or, at the same numerical values of the parameter 
\To~ T\, the derivative is larger in the He41 region 
than it is in the He4 n region.12-17 If the preceding 
results were even qualitatively representative of the 
actual state of affairs at the transformation line or in 
its neighborhood, they would seriously conflict with 
the singular isothermal compressibility, expansion coeffi
cient and constant pressure heat capacity at the transi
tion line, implied by the interpretation based on the 
measurements of the two latter properties under satura
tion condition. I t is hereby assumed tacitly that the 
thermodynamic characteristics of the transformation 
remain invariant as one moves away from saturation 
conditions along the transformation line. 

We turn now to the discussion of the isobars V(T,p) 
in the vicinity of the transformation line VQ(T). 
Volume measurements along the saturation line and 
in the compressed liquid at the approaches of the 
melting line have been made recently in this labora
tory.11'13 The compressed liquid isobars have been 
studied by Grilly and Mills13 under limited temperature 
resolution, and the isobaric expansion coefficients de
rived therefrom are very large at the transformation 
line. These expansion coefficients have been repre
sented approximately as having a cusp at the transition 
temperature associated with large discontinuities of 
(d2V/dT2)p at the transition line. The derived expansion 
coefficients reach values of about (—0.16)/°K at the 
transformation line. This value is, numerically, larger 
by a factor of more than two than the saturated liquid-
expansion coefficient derived by Kerr and Taylor11 from 
their saturated liquid volume measurements under in
creased temperature resolution and at T0~ r ~ 1 0 - 4 °K. 
These authors fit their (lnPVsat) values in terms of an 
expression depending as In| T— TQ\ \T~TO\ on the tem
perature difference \T— To,sat\ at | T— To.satl $J3X10~2 

(°K). The expansion coefficient calculated therefrom 
thus depends linearly on ln| T— r0 , s at | in the neighbor
hood of Zo.sat. If this logarithmic fit is extrapolated 
into regions of \T—To\ well below those allowed by 
the temperature fluctuations, say down to \T— TQ\ 
^10~1 5 (°K), even at such physically unjustified tem
perature differences, the expansion coefficient reaches 
a value of about 0.18/(°K) which is the value of the 
saturated liquid expansion coefficient as at about 4.6°K, 
nowhere near the approaches of the critical tempera
ture of about 5.2°K. 

To recapitulate, the isochores, although having always 
finite temperature derivatives, appear to have tempera
ture coefficients at or near the transition line which are 
inaccessible to experimental control. To date, the experi-
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mentally accessible limiting values are considerably-
lower than the approximate temperature derivatives 
(dpo/dT) of the transition line po(T) at the pertinent 
temperatures at which the isochores p(T,V) reach this 
line. By (3), the limits (dpo/dT) can only be reached, 
in general, if the isothermal compressibility were to 
become singular at the transition line. Actually, the ap
proximate logarithmic representations of the (dp/dT)v 
data12,17 at the approaches of the transition can only 
yield values to the conditional limits equal to (dpo/dT) 
provided one uses in the above fits values of | T— To\ 
such that 

|r-~r0|«((Ar2)av)1/2
J . (14) 

or values which are much smaller than the root-mean-
square values of the temperature fluctuations of the 
systems investigated. Clearly, the logarithmic fits lose 
their meaning at the limit T —> To as emphasized by 
Lounasmaa himself.12,17 Similarly, the tendency of the 
expansion coefficients toward their singular limits, im
plied in conjunction with the reaching by the! coeffi
cients (dp/dT)v their finite limits at the transition, is 
extremely slow. These thermal properties do not seem 
to justify any favorable conclusion as to their correct 
limits at the transition line. 

We will return to the discussion of the isochores at 
the approaches of the transition line after an analysis 
of the behavior of the heat capacities near the transi
tion line and a brief consideration of the temperature 
fluctuations. 

3. HEAT CAPACITIES OF LIQUID He4 IN ITS 
TRANSFORMATION REGION 

An important empirical result on the entropies 
So(T,V) and So(T,p) along the transformation line 
consists in the finite values of the total derivatives of 
these two entropy expressions: 

dSo(T,V)/dT=(dS/dT)v-v0 

+ (dS/dV)T=To(dVo/dT), (15) 
or, 

Cv(To,Vo) = Co(To,Vo) 
- To(dp/dT)v-v0(dVo/dT), (16) 

where CV is the constant volume heat capacity at Fo, 
Co is the heat capacity along the transformation line, 
or T(dSo/dT). Since (dp/dT)v~v0<®, it is seen that 

CF(To,Fo)>Co(ro,F0) . (17) 

A possible case of (17) reducing to an equality will be 
considered further below. 

With T and p, as independent variables, one obtains, 
similarly with (16), 

CP(To,po) = Co(To,po)+ToVoap(To,po)(dpo/dT), (18) 

where Cp(To,po) is the constant pressure heat capacity 
at the transition line po(T), Co(T0)po) stands for 

T0(dSo/dT), the heat capacity along the transition 
line, ap is the isobaric expansion coefficient at the 
transition line, and (dpo/dT) is the temperature deriva
tive of po(T). Since, Co(To,po) is finite together with 
(dpo/dT) all along the transformation line, according 
to data available to date on these properties, it is 
seen that if Cp(T,po) is singular, then so is ap(To>po) 
and XT(To,po) in turn, and vice versa. These are the 
correlations between the possibly singular thermal 
properties on the transformation lines imposed by 
thermodynamics, and alluded to in the foregoing 
sections. 

Let also S8at(T,V) and $8at(T,p) denote the entropy 
of the saturated liquid. One obtains with the former 

dS8at(T,V)/dT=(dSaat/dT)v 

+ (d$8at/dV)T(dV8at/dT), (19) 
or, 

csat(r,F)=cF,sat(r,F) 
+ T(dp/dT)Vs&t(dV8at/dT). (20) 

Here, V8at(T) is the saturated liquid volume in the 
(V,T) plane, and (dp/dT)vs*t is the partial temperature 
derivative of the liquid isochore p(T,V8at) at its inter
section with the saturation vapor pressure line p8a%(T). 
We have seen that CV is finite at the transition line, 
and at (r0)Sat/ F0)Sat, #o,sat) in particular. Hence, the 
saturated liquid heat capacity C8at(T,V) becomes 
singular if dV8at/dT or asat, the expansion coefficient 
along the saturation line is singular at the transition 
point. I t is to be noted that since (dp/dT)v<0, and 
(dV8at/dT)<0 around the transition temperature r0(Sat, 
Csat>CVl6at m t n i s region. 

With Ssat(T,p)y one obtains again 

cP,sat(r^)=csat(r^)+rFsatap(r,^)(#sat/jr), (21) 

where (dpsat/dT) is the temperature slope of the vapor 
pressure curve, p8at(T), ap(T,p) is the isobaric expan
sion at saturation, that is, at the point where the 
isobar V(T,p) reaches the saturation line. Since ap<0 
at Tatii<T<Ta,i, and (dpsat/dT)>0, it is seen that 
Cp,sat<CSat over the temperature range (Ta,i~Taiu). 

I t is seen easily that the Ehrenfest relations for 
ACP or ACV, across the transformation line, result at 
once from (16) and (17) as well as from (20) and (21) 
at saturation by writing these heat capacity relations 
above ( + ) and below (—) the transition line and 
subtracting. 

At the saturation line and the transformation point, 
it is possible to eliminate Cv(T,V) between (16) and 
(20), or to eliminate Cp(T,p) between (18) and (21), 
yielding a connection between Csat and Co, or 

Csat(To,satj ^0,sat)~Co(T'o, sat; 1^0,sat) 

= T0,Udp/dT)r=v0iBai£(dVaWdT)-(dVo/dT)l 
~ 2nO,sat^O,sat<^2?( '̂o>satj ^0,sat) 

X\_{dp,/dT)-{dpsJdT)-]. (22) 
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Since the expressions inside the square brackets are 
always negative, and since {dp/dT)v^v^B&t as well as 
«2>(̂ otSat; ^o.sat) are negative, one has necessarily 

CsaH^O.sat; ^ 0 , s a t ) > C ' o ( J , 0 , s a t ; Vo,sat) • ( 23 ) 

The empirical results6,7 on Csat appear to be ap
proximately representable through 

A I r? I ^ I T rp I i •k'satj 1 *> 1 O.satj 
sat —•^•sat~t"-£Jsat m | i — i o,sat| "T"A v ^ r 

U, 1 < i o.sat, 

10-e< | T-To\ < 10-2 (°K), (C) 

ASat, -#sat, and Z>sat being constants. It is of interest that 
a value of Csat claimed to have been obtained7 at 
r 0 - r = 2 X l O - 7 °K falls below the line (C) linear in 
In(TQ—T), although the relative error increases rapidly 
at r 0 - r < 1 0 - 5 °K and reaches there (±10%) or 
more. Using the empirical fit to the Csat data, as well 
as the thermodynamic connection between ap and 
«sat, together with available data on asat, Vs&t, and 
(dp8Sit/dT), (21) yields for CPlSat an approximate rela
tion similar to that of Csat above, Eq. (C), with new con
stants A p, Bp, and Dp.

7 It should be noted that in deriv
ing Cp.sat, it is assumed7 that the logarithmic fits to the 
asat data remain valid at | Z"—T̂ ol values outside the 
range of measurements of asat. At T= (r0)Sat—10~6) 
°K, the calculated Cp,sat is 10.7R. Since, at these tem
peratures, 78at or (Cp.sat/CV.sat) is unity for all practical 
purposes, this Cp,Bat at the indicated temperature is 
also CV.sat- On the other hand, CV is always finite at 
the transition line according to data available at the 
present time, as indicated above. Using Eq. (20), and 
the empirical12*18 Co(r0,sat; Fo,sat), the upper bound of 
(dp/dT)v=Vo,8SLt o r (dpo/dT) at the saturation line, as 
well as (dVo/dT) at the same line, one finds the upper 
bound of CV.sat at To,sat to be approximately 

limsupCF,sat(2no,sat; V0tBa>t)^93R. 

Other estimates range to up about twice this value.7 

The question may be asked here, at what tempera
ture very close to (To.sat) is the preceding approximate 
upper bound of CV.sat reached by CPi3at itself. Using 
the logarithmic fit derived for Cp,sat from that of Csat, 
Eq. (C) above, one finds that Cp,sat would be equal to 
(93R) at (T0-T)~ 10~64 (°K), a physically meaning
less temperature difference resulting from the extrap
olation of Cp,sat into the above region of temperature 
differences. Clearly, on the assumption of the validity 
of this extrapolation, the Cp,sat value is inaccessible as 
is the CV.sat value, and as was the case with the 
(dp/dT)v values at the transition line discussed above, 
all connected with the tacitly assumed singularity6'7 

of Cp, XT, orap, at the transition line. 
According to statistical thermodynamics,19 the root-

18 0 . V. Lounasmaa, Cryogenics 1, 212 (1963). 
19 G. L. de Haas-Lorentz, Die Brownsche Bewegung (Frederick 

Vieweg & Sohn, Braunschweig, Germany, 1913); cf. also, R. 
Fiirth, Schwankungserscheinungen in der Physik (Frederick Vieweg 
& Sohn, Braunschweig, Germany, 1920), 

mean-square temperature fluctuations of a system, 
whether in contact with a heat reservoir of very large 
heat capacity or isolated, in the latter case any small 
volume element (AV) of the system is in contact with 
the rest of it of volume (V— AV), is given by 

«ArV) 1 / 2 = [T/W*{Pv/R)11*}, (24) 

where CV is the constant volume heat capacity of the 
system in question, N is Avogadro's number.20 At 
Zo.sat and with CV/i£~10, which is already enormous, 
one finds 

«Arv)r0,8at1/2^io-120K, 
and by taking the above indicated upper limit of 
Cv,s*t of 93R, this is reduced only by about a factor of 
3. Clearly, with such values of ((A^V)1 '2, if the 
empirical logarithmic fits did continue to have physical 
meaning outside the range of \T— To\ explored experi
mentally, statistical thermodynamics excludes | T— T§\ 
values which fail to satisfy the inequality, 

|r-r0|»«Ar2)av)1/2. (25) 

Only such values of the argument of the logarithm in 
Eq. (C), for instance, which are well outside the 
fluctuation range, are justified physically. 

These limitations of strictly statistical thermody
namic character have been, apparently, completely 
neglected in the various works quoted above discussing 
singularities, where direct or indirect arguments have 
been advanced toward the likely occurrence of infinities 
of various thermal properties of liquid He4 at the 
transformation line. The considerations advanced here 
clearly emphasize the fundamental conceptual diffi
culties connected with attempts at using approximate 
empirical fits to data of some thermal properties of 
extremely slow temperature variation so as to extract 
with them indications favoring its possible singular 
behavior at some critical temperature or thermody
namic state. Not only is there a fundamental difficulty 
to justify through macroscopic thermodynamic meas
urements the extremely slow logarithmic approach 
toward a possible singularity of some property, but, 
as shown above, even finite, though possibly very 
large, values of certain correlated properties then 
appear to become inaccessible to measurements at 
even a fractional value of their very large limits at the 
critical state. 

In view of these difficulties, which seem to exclude 
an unambiguous conclusion about the existence of 
singular thermal properties at the liquid He4 n-He41 
transformation line, it appears necessary to devise an 

20 For a small isolated system of volume V, (24) underestimates 
the fluctuations in the sense that in this case one considers the 
subsystem of volume AV, and its constant-volume heat capacity 
will be smaller than that of the remainder of the system. To be 
sure, (AV) can be chosen to be, essentially, anywhere within V, 
subject to the requirement that it be large enough to be describa-
ble with the formalism of macroscopic thermodynamics. 
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approach to this problem where quantitative measure
ments may allow possibly a qualitative justification of 
the presence or absence of actual singularities of a 
group of thermal properties at the transition line. We 
should like to discuss such an approach in the next 
section under the assumption that the nature of the 
liquid-He4 transformation remains invariant all along 
the transformation line. If this assumption is omitted, 
then the approach to be studied would only yield 
information on the nature of this transformation at a 
single point of the transition line, namely, at melting. 

4. THE LAMBDA TRANSFORMATION AT MELTING 

Before entering the main topic of this section, it is 
necessary to discuss a restricted family of isochores of 
liquid He4 out to states of thermodynamic coordinates 
lying somewhat beyond the locus Ta,i where they 
become normal again. The region of the liquid-He4 

phase diagram of particular interest to us has been 
specified previously.1 The isochores of this region may 
be divided into several classes. For our problem, only 
those isochores which reach the transformation line 
and continue beyond it are of interest. This class has 
volumes in the interval 

Vo,M<V<Vo,a&t, (26a) 

where VO,M is the volume of the liquid at melting, and 
at the transformation line; that is, at the intersection 
of the liquid volume at melting, VM(T), and the volume 
transformation line VQ(T). Actually, the subclass of 
isochores of volume somewhat below VO,M is also 
anomalous up to 

V,tM<V<VMt«, (26b) 

where VM,<* is the liquid volume at melting and at the 
end point of the locus Taj. The families of isochores 
and isobars existing at temperatures T<Ta,i are all 
of particular interest, since they all display anomalies 
consisting in at least one extremum, not counting the 
one existing at the absolute zero. All isochores of volume 

VM(T=0)< V< F s a t ( r = 0 ) , (26c) 

start at the absolute zero and increase first. Those of 
volume 

VM(T=0)< V< V(TM,min) , (26d) 

where V(TM,m) is the liquid volume at melting and at 
the minimum of the melting pressure line,21 start at 
the absolute zero and increase with temperature until 

21 The melting pressure anomaly of He4, discussed by us in 
Refs. 1 and 2, has been claimed to have been observed both in
directly, through the negative latent heat of melting, by J. Wiebes 
and H. C. Kramers, Phys. Letters 4, 298 (1963), and directly 
by C. Le Pair, K. W. Tacomis, R. De Bruyn Ouboter, and P. 
Das, Physica 29, 755 (1963). To our knowledge, an exhaustive 
experimental investigation of the melting pressure anomaly of 
He4 is, however, lacking at the present time. As pointed out 
further in the text, the result to be derived below is independent 
of the presence or absence of the melting line anomaly. 

they reach the melting line. Here, these isochores 
develop a gap and leave the melting line at p>pu,mm, 
PM,min denoting the melting pressure minimum, and 
T>TM,mm. For our problem, these latter isochores 
which leave the melting line at p>pM,m and T> 
are of particular interest. Before studying these in 
some detail, we would like to digress briefly on some 
larger volume isochores. 

The class of anomalous isochores contains two par
ticular subclasses, the members of which have one or 
two common points with the vapor-pressure curve or 
the saturated-liquid volume curve at the lower tem
peratures. The isochoric arcs of one of these subclasses 
have volumes V such that 

F s a t ( r = 0 ) < F < F 8 a t , m a x , (27a) 

^sat.max is the saturated liquid volume maximum at 
T< r0,8at. These start out on the vapor pressure curve, 
leave the latter and return to it. The isochores of 
volume 

F s a t ( r = 0 ) > F > F 8 a t , m i n , (27b) 

have only their end point on the vapor pressure line. 
These are limited arcs, over the low-temperature in
terval of interest here. The isochores of the subclass 
(27a) all leave the vapor-pressure curve with tempera
ture derivatives 

(dp/dT)v=(dpmt/dT) 

+(!/Va&tXT(T,p8&t))(dVBat/dT), (28) 
and, since, 

(dV6&t/dT)>0, 0<T< 
•*• s a t , m a x , 

(29) 
(dp/dT)v>(dpnt/dT), (30) 

over the same temperature interval. The isochores of 
the volume interval (27a) start to increase first by 
(28) or (30); they develop their maximum at the locus 
Ta,u{p), and turn around to decrease and to reach the 
vapor-pressure line where 

(dp/dT)v<0, (30a) 

since the second term on the right-hand side of (28) 
with (dVBa,t/dT)<0 will have to outweigh the first 
positive derivative (dpaat/dT) of the vapor-pressure 
line. The isochoric arcs of the subclass (27a) become 
shorter as their volume parameter approaches Fsat,max 
until the isochore of this latter volume reduces to a 
point to reemerge again from the vapor-pressure curve 
at T> Tsat.mm in the He 41 region, where it becomes 
normal together with this high-temperature extension 
of the subclass (27a), all starting out on the vapor 
pressure curve with the temperature slopes (28) or 
(30). I t is seen at once that the end point of the locus 
Ta,u(paa,t), where (dp/dT)v vanishes at the vapor 
pressure line, must occur at 

Toe,II (i>sat) > ^sa t ( Vaa,t, max) , ( 31 ) 
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where, by (28), 

(dpmt/dT) = - (l/V8atXT(T,p8at)) (dV&JdT), (32) 

which is only possible with (dpsat/dT)>0 when 
(dV8&t/dT)<0, or beyond the temperature of the 
saturated-liquid volume maximum; that is, beyond 
^sat(^'sat)max). The opposite situation develops in the 
He 4 1 region. Here, the temperature Ta>i(ps&t) of the 
locus of the minimas of the isochores or the minimas 
of the isobars must occur by (28) at a temperature 
where (dV8at/dT)<0; that is, where the saturated 
liquid volume still decreases before having thus reached 
its minimum of Fsat,min, or, 

Ta, I (^sat) < ^sa t ( Fsat , m in) . (33) 

We return now to the study of those isochores which 
start out at the melting line PM(T) at pM>pM,min-
These isochores are all decreasing functions of the 
temperature, and according to the relation (4)-above, 
these isochores have finite first and second temperature 
derivatives with possible discontinuous variations of 
either one of these at the transformation line, as indi
cated by (5) and (8). This subclass of isochores of 
initial pressure 

pM,mm<pMl^:pM(TotM) , (34) 

all reach the transition line. The arc of the melting 
line between the states, (pM,min,VM,m\n,TM,mii) and 
(i>o,ii4",Fo,iif,7Yikf), is thus mapped point by point or 
state by state on to a segment of the transition line. 
The state (po,M,Vo,M,TotM) is its own transformed 
point or map point; the melting line pn(T) and the 
transition line po(T) intersect at this point. 

Since pn(T) and po(T) intersect, the isochoric arcs 
p-(T,V) in the He4 n region have temperature and 
pressure lengths (TQ—TM), (pM—po), which decrease 
as PM(T) approaches poiM or PM(TO,M), the intersection 
of PM{T) and po(T). Since, in the affine (p,T) plane, 
no length of arc or that of a straight line segment can 
be defined, any use of such lengths will be understood 
to refer to the temperature and pressure differences 
of the end points of these segments. The isochoric 
arcs of decreasing volume have thus decreasing lengths 
in the He4 n region, and in the limit pM —•> po,M, 
TM—>TQ,M, VM—VotM, the isochoric arc p-(T,V) re
duces to a point. The derivatives of these arcs at the 
transition line are such that 

(dp-/dT)V->v0<0, (35) 

and, also, we saw above, the condition (4) 

(dp-/dT)v^v0>(dp0/dT), 

must be satisfied and is rewritten here for convenience. 
As the starting point PM(T) of the arcs p_(T,V) 
approaches PM(TQ), these arcs tend to get closer to 
their chords, the temperature slopes of which also 
approach the temperature derivatives of the isochores 

at po(T). Since the derivative function pT-(T,V) or 
(dp-(T,V)/dT) at po(T) is regular and well behaved, 
it is seen that even though the isochoric arc p-(T,V) 
at T<TotM reduces to a point at (po,M,To>M)' the 
derivative function there becomes identical to the 
temperature derivative of the limiting vanishing chord 
of p-(T,V); that is, to the temperature slope of the 
tangent to the transition line po(T) at its intersection 
with the melting line. We have thus obtained a strictly 
geometrical proof of the relation 

limTM _> T0,M, VM - Vo,M(dp-(T>v)/dT)v 
= l im r -+ ToM(dPo/dT) , (36) 

which states that the limiting value of the partial 
temperature derivatives of the isochores p-(T,V) on 
the low-temperature side of the transition line, subject 
to the conditions (35) and (4) above, must be identical 
to the temperature slope of the tangent to the transi
tion line po(T) at its intersection with the melting line. 
But, according to the thermodynamic relation (3) re
written here for p-(T,V), 

Zdp„(T,V)/dT-]v^Vo=: (dpo/dT) 

+ £l/Vo(T)XT_(T0jpomdVo/dT), (3a) 

the geometrical result (36) requires that 

limr -» T0,M, Vo -> V0IM, $o -> ̂ o.^C^o^r-^o^o)]""1 

X(dVo/dT)^0. (37) 

Clearly, the vanishing of this product in the state 
(po,MiVo,M,TotM) will occur if either one of the follow
ing three situations is realized: 

limro - TO.M, po -> PO.MXT-(T,P) —> oo ? 

(38a) 
lim ro _> TO.M, Vo - VoAdvo/dT)^0, 

or, in the same limits, 

lhnXT-.(T,p) -> finite, l im(^F 0 /^ r ) -> 0, (38b) 

or, again in the same limits, 

limXr_ ->oo, l im(^Fo/^r) -> 0. (38c) 

If, and only if, the thermodynamic characteristics of 
the liquid-He4 transformation process at melting are 
identical with those of all the other points of the 
transformation arcs po(T) or VQ(T), that is, if the limit 
points (pQtM,Vo,M,TotM), (po ,satj V 0,satj To.Bat) belong to 
the set of transformation points, then (38a) has the 
following interpretation: If the finite temperature slope 
of (dVo/dT) at the melting line is established experi
mentally, then this result on the measurement of a 
finite property at a single point of the volume transi
tion line confirms the occurrence of singularities of the 
isothermal compressibility XT~, the isobaric volume 
expansion coefficient ap_, and the constant pressure 
heat capacity Cp_ by (18) on the H e 4 n side of the 
transition. 

If Vo(T) has a parabolic approach toward its end 
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point at the melting volume line VM(T) of the liquid, 
with the vertex at (VO,M,TQIM), that is, p being a 
constant, if 

limr -* To,MVo(T)= VO,M(TM,O) 

+p(T-TM,o)2+--, (39) 

then the requirement on the existence of singularities 
of XT~, ap_, Cp_ at the transition line may be disposed 
of completely. The behavior (39) of VQ(T) near the 
melting line is fully compatible with finite values of 
the indicated group of three thermal properties at the 
transition line, situation (38b). However, the behavior 
(39) does not rule out the occurrence of these singulari
ties at the transformation line by (38c). Hence, if (39) 
describes correctly the behavior of VQ(T) near TQ,M 
within the framework of thermodynamics, a new ex
perimental approach has to be devised toward the 
problem of deciding whether all properties are finite, 
situation (38b), or whether some of them are singular 
on the He4 I I side of the transition, situation (38c). 
I t should be noted here that the explicit use above of 
the melting pressure minimum was strictly for con
venience of the geometrical proof of (36). This proof 
is valid whether pM,min actually exists or not. 

I t seems not without interest to appraise the possible 
situation, (38b), in the light of the measured iso
thermal compressibilities12'13'17 as well as the inaccessi
bility of finite but very large values of this possibly 
singular property as a consequence of the limitations 
resulting from temperature fluctuations discussed in 
the foregoing sections. Before so doing, however, we 
would like to consider briefly some consequences of the 
parabolic limiting behavior (39) of VQ(T) near TQ,M-

Let SM(T,V) be the entropy of the liquid at melting, 
and So(T,V) the entropy along the transition line. 
These yield, at once, 

CM(T,V) = Cv(T,V)+T(dp/dT)v-vM(dVM/dT), (40) 

where CV is the constant volume heat capacity at 
melting, and 

Co(T,V) = Cv(T,V)+T(dp/dT)v-v0(dVo/dT), (41) 

where CV is the constant volume heat capacity at the 
transition line. At melting, or (To,AT,TVJW), the latter 
reduces, by (39), to 

limr -* TO.M, v -> VO,MCO(T,V) = CV~(TO)M,VO,M) > (42) 

(dp/dT)v=VQM being the finite derivative (dpo/dT) in 
this state by (36). We have alluded to this relation 
(42) in the foregoing section in connection with (17). 

Also, (40) and (41) lead, with (36), to 

C M (To, M, Vo, M) = Co ( TQ , M, VQ , M) 

+ T0>M(dpo/dT) [dVu/dT), (43) 

which connects the heat capacity along the melting 
line CM with that along the transition line Co, in the 

state (po,M,Vo,M,TotM), the derivatives (dp0/dT) and 
(dV'M/dT) both referring to this state. I t is seen that 
Co being finite, CM will be singular if {dV M/dT) is 
singular. Notice that second term on the right-hand 
side of (43) is positive since both (dp0/dT) and 
(dV'M/dT) are negative in the state in question. 

In returning now to the possible situation described 
by (38b) with (39), it is appropriate to consider the 
inequality (33). I t should be recalled here that, em
pirically,11 the minimum of the saturated liquid volume 
occurs at about [Z ,

0,sat+(0.006) °K] . By (33), the 
locus Ta,i must thus meet the saturation line at 
2 \ S a t < ^ < ( 2 \ s a t + 0 . 0 0 6 ° K ) . The saturation vapor 
pressure22 at rsat,min is higher by about 60X10 - 3 mm 
Hg, at 0°C, than at To.sat. The saturation vapor pres
sure at Tati(paa,t) will also be closer to ^0,sat than the 
just indicated pressure difference. If, as implied on 
the basis of physically unjustifiable extrapolation,8-11 

(dV-/dT)p did become ( - c o ) at the transition line, 
this quantity will have to increase from (—°°) to 
zero over a temperature interval less than 6X10~3 °K. 
On the other hand, at increasing pressures, the tem
perature interval t^aj(p) — T0(p)2 over which the 
isobar V(T,p) has to recover from its singularity to 
reach zero, increases considerably. The temperature 
interval of recovery from the implied singularity to its 
zero of (0V/dT)p increases from saturation to melting13 

by a factor of about 15. 

We saw above that if XT were singular at the trans
formation line, as a consequence of the implied singu
larity of the isobaric expansion coefficient, so that the 
partial temperature derivatives (dp/dT)v would reduce 
to the total derivatives (dp0/dT) of the transformation 
line, at the same temperature, then this derivative 
reaches its lowest value of about (—100) to (—90) 
(atm/°K), at saturation. This derivative has to in
crease to zero at the average rate of 1.7 X104 a tm/(°K)2 . 
On the other hand, at increasing pressures, (dp0/dT) 
decreases numerically, or increases algebraically, while 
at the same time the recovery interval to reach zero 
increases rapidly, as mentioned. Geometrically, the 
recovery process of (dV/dT)p or (dp/dT)v from their 
anomalies at the transition line is queer, to say the 
least. 

The preceding discussion did not advance any argu
ment for or against the possible situation described by 
(38b). I t is, however, remarkable that the experi
mentally determined (dp/dT)v values at the ap
proaches of the saturation line exhibit an apparently 
more normal behavior.12-17 These measured partial 
derivatives of isochores are the smallest numerically 
at the largest liquid volumes near saturation, and they 
increase numerically at decreasing liquid volumes. 
Here the numerically smaller (dp/dT)v values near 
the transition line also have a smaller temperature 
interval [Ta,i(p)-Tz(p)~] to reach their zero and their 

22 Natl. Bur. of Std, (U. S.) Monograph 10 (1960). 
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normal region, while the numerically larger (dp/dT)v 
values at decreasing liquid volumes have also a larger 
recovery interval [Ta%i(p) — To(p)'], a geometrically 
more satisfactory behavior. I t is of interest that this 
trend of variation of (dp/dT)v at the approaches of 
the transformation line has been first exhibited in the 
early experimental studies15 of the diagrams of state of 
liquid He4. Again, the preceding discussion does not 
yield any definite argument in favor of the inequality, 

limr - To, * - Po(dp~/dT)v> (dp0/dT), 

which then would be equivalent to the existence of 
finite, though possibly large, values of the isothermal 
compressibilities at the transformation line. The latter, 
in turn, would impose, by (38), the parabolic approach 
(39) of VQ(T) toward VQ(TQ,M). The finite compressi
bilities would be equivalent to the absence of the 
implied singularities of the expansion coefficients owt, 
ap, and au, this latter referring to the coefficient along 
the melting line, and of the heat capacities Csat, Cp, 
and CM at the transition. I t seems, however, that the 
peculiar geometrical situation with respect to the 
derivatives, (dpo/dT), (dp-/dT)v, and the tempera
ture intervals (Ta,i— T0), will have to be kept in mind 
until it is explained satisfactorily.23 

23 It is of some interest to call attention here to the following 
situation: In the highly increased temperature resolution experi
ments of Refs. 6 and 7, the largest saturated liquid-He4 heat 
capacity claimed to have been measured, at 2X10 - 6 °K below 
TYsat, was 10.47i?db(10%). This heat capacity is actually smaller 
than the largest measured saturated liquid-He4 heat capacity 
at ro>8at_, reported graphically in Ref. 15. The latter is given as 
11.75i?, which is outside the estimated 10% precision claimed in 
Ref. 7. The estimated precision of this largest measured heat 
capacity is, however, not available to us. 

The following remarks should round out the dis
cussion of the isochores leaving the melting line PM(T), 
at TM>TQ,M. I t will be seen that if (dp/dT)v were 
discontinuous across the transition line, then at melting 
P+(T,VQ,M) would leave pu(T) with a derivative such 
that 

(dp+/dT)v0tM>(dpQ/dT), T=To,M, 

and, in addition, (d2p+/dT2)v0iM>0, in contrast with 
(d2p0/dT2), which is negative at all points of po(T). If 
this partial derivative were continuous along po(T), 
then P+(T,VO,M) must have a common tangent with 
po(T) at To,M, while (62p+/dT2) 

VO,M would be positive, 
in contrast with (d2p0/dT2); the two curves po(T) and 
p+(T,V) would thus have a first-order contact at the 
melting line. The class of isochores of volume VM< VO,M 
all start out on the melting line PM(T) with negative 
first- but positive second-partial temperature deriva
tives as they approach their minimas on Taj(p). 
Finally, the last member of this class of volume 
VM(Ta,i) leaves the melting line with vanishing tem
perature derivative, having its minimum on the melting 
line at Tati(pM), to increase beyond as a normal 
isochore. All isochores of volume VM<VotM(Tati) are 
normal. 

In concluding, it seems justified to emphasize the 
approach outlined above toward obtaining new, pos
sibly decisive, information on the thermodynamic fea
tures of the transformation phenomenon of liquid He4. 
Accurate experimental determinations of a branch of 
the volume transition line Vo(T) at its approaches of 
the liquid volume at melting, as well as its temperature 
derivatives, appear to be of great thermodynamic 
significance. 


